Hayabusa 2 heads off to an asteroid tomorrow

On Wednesday, December 3 at 1:22 p.m Japanese Standard Time (Tuesday, December 2, 11:22pm EST),  the Japanese Aerospace Exploration Space Agency (JAXA) will send a spacecraft to an asteroid to collect a sample and return it to Earth. Launch coverage should be available online, but here’s a link to their LiveStream feed.

There’s a lot about this mission to be excited about, not the least of which is that this is the second asteroid sample return mission for JAXA. That’s important because asteroids come in several varieties, each with their own chemical and mineral compositions, so a sample from just one asteroid is hardly enough to get a full picture of what the early solar system was like.

Like its predecessor, Hayabusa2 is in for the long haul. It’s mission will require six years, largely due to the complex dance around the inner solar system, which includes an Earth flyby next autumn, required to pick up enough speed to get out to the asteroid itself. JAXA has an animation which describes the path it will take to the asteroid and back to Earth.

Hayabusa 2’s orbital trajectory. Credit: JAXA

Hayabusa2’s target is asteroid 1999 JU3, which is a C-type asteroid. That is, one that is composed of older, more primordial materials (including water and organics) that are believed to have “seeded” the Earth during its formation. Once there, Hayabusa2 will orbit the asteroid for a year, detonate a small bomb to create a crater, descend to collect a sample from underneath the crater, and deploy four – count ’em, four! – landers.

Artist's impression of Hayabusa2 launching the Minerva lander.Credit JAXA
Artist’s impression of Hayabusa2 launching the Minerva lander.Credit JAXA

Talk about one hell of an ambitious mission! JAXA has a really nice 12-minute video which explains the mission in greater detail:

Hayabusa 2 mission. Credit: JAXA
Go Hayabusa2!

Wanderers

Many of us look at images of the planets of our solar system and see magnificent landscapes and stunning views of other worlds. But filmmaker Erik Wernquist sees humans living there. Go to full screen, HD, and turn up the sound:

Wanderers – a short film by Erik Wernquist from Erik Wernquist

I’ve watched this film about a dozen times now and I still cannot get over how incredibly amazingly cool this is! Wernquist takes us on a journey through time from nomads wandering the desert 10,000 BCE (underneath a sky filled with planets, no less) to future humans hiking on Europa, receiving shipments on Mars, to domed cities on Iapetus, and finally to clouds lit by ringshine as seen from a dirigible in Saturn’s upper atmosphere. All set to a heart jumping soundtrack, and narrated by Carl Sagan reading from Pale Blue Dot.

Just…wow.

Best of all, the imagery Wernquist chooses are not only sourced from actual NASA and ESA spacecraft, but he accurately imagines the realities of living elsewhere in the solar system. For example, with a surface gravity of just 0.14g, you would be light enough on Titan to strap on some wings and fly through the methane atmosphere. And sure enough, that’s exactly what we see:

Flying over Legia Mare, Titan. Credit: Erik Wernquist

Or how about base jumping off the tallest cliffs in the solar system, which happen to be  on Uranus’ moon Miranda? With a surface gravity of just 0.018g, you’d have plenty of time to enjoy the view and could safely land on your feet with some simple retro rockets.

Base jumping off Verona Rupes, Miranda with Uranus in the background. Credit: Erik Werrnquist

Or just enjoying a pleasant day inside a pressurized rotating asteroid lit by an artificial sun.

A hollowed out asteroid is pressurized with air and filled with water to create lakes. It rotates about its long axis to create 1g acceleration via centripetal force. Credit: Erik Wernquist

Wernquist takes us on a journey that, for now, exists only in our dreams and speculations. But he manages to make these scenes seem so real that maybe, one day, they will be. Nothing that is depicted in this film is outright impossible, we only have to have the will to make this happen.

Update: I was initially going to offer a scene-by-scene breakdown to help explain what’s being depicted in each scene, but Erik has already done that here so by all means check it out!

The little lander that could

Rosetta's view of Philae as she descends to Comet 67P. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Rosetta’s view of Philae as it descended to the surface of Comet 67P on November 12, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Philae now lies somewhere in the dark on Comet 67P. Its batteries drained, it has gone into hibernation, probably for the last time. Its story was nothing short of dramatic, exciting, and seemingly tragic for so many of us here on Earth unable to do anything but watch the little lander die from 300 million kilometers away.

And yet, it was one of humanity’s finest hours.

If you were to stop reading this post right now and head on over to phoenixpic’s post about Philae’s brief, but highly successful race-against-the-clock mission, I’d be totally cool with that. It’s a well-told tale that puts a lot of the events into its proper context.

But I remain in awe of just what an amazing success the Philae lander was. Despite its failed downward thruster, bouncing not once but twice away from its planned landing site, its harpoon system not being fired, a lens cap not coming off its spectrometer, ending up in the shadow of a cliff, deprived of the sunlight it badly needed to recharge its batteries,  despite all of those things….Philae still managed to fulfill its mission.

Think about that for a second. Against all odds, all of the available science instruments on board Philae were able to sample a 5 billion year-old relic from the formation of the solar system. Ok sure we’re not going to be able to go into an extended mission with Philae. We’ll never be able to see a beautiful panorama of the surface and watch it gently erupt as it draws nearer to the Sun.

But there is a ton of data already gathered and much, much more to come from the Rosetta orbiter itself. We’ve come a long way, and there is much to be learned. This is what Ambition looks like.

 

Going to the NASA Social for Orion’s First Launch!

Woo-hoo!!! I’ve been accepted to cover the first launch of NASA’s Orion spacecraft on December 3rd! The event is a NASA Social – much like the one I attended last year to cover the LADEE launch from Wallops Island, VA. This time the spacecraft is Orion and it will be launching from Cape Canaveral Air Force Station in Florida, but the good folks at NASA have arranged meetups at NASA centers around the country to get an inside preview.

Lucky for me, I’ve been selected to cover the event at my old stomping grounds at  NASA’s Goddard Spaceflight Center in Greenbelt, MD. It will be cool to get back there and see what’s new, tour the facilities, and hopefully get a good look at the James Webb Space Telescope under assembly.

But the main event is the maiden flight of the Orion spacecraft itself, which actually won’t be until early the following morning.  As you probably know, the United States has been hitching rides to the International Space Station aboard Russian Soyuz spacecraft ever since the retirement of the Space Shuttles in 2011. NASA has been developing a new manned spacecraft – Orion, which looks an awful lot like the Apollo spacecraft last flown nearly 40 years ago.

But whereas Apollo was designed to take astronauts to the Moon, Orion is designed to take astronauts to the Moon, an asteroid, Mars, or anywhere Congress decides to pony up the dough for. But like any new vehicle, it eventually has to be tested in actual spaceflight, and that’s where the Exploration Flight Test 1, or EFT-1, mission comes in.

EFT-1 will launch Orion atop a Delta-IV Heavy launch vehicle, boost it an altitude 15 times higher than the International Space Station, return to Earth in a high-speed re-entry, and parachute to a splashdown landing in the Pacific ocean. To give you a better idea of the mission, check out this video:

Orion: Trial By Fire. Credit: NASA

The mission is pretty ambitious for a first outing. Not only will the spacecraft’s re-entry and thermal protection systems be tested, but it will do so from a much higher altitude and at a far steeper angle than current spacecraft. The Space Shuttle and Soyuz return from the International Space Station from low-Earth orbit at the relatively “low” speed of 17,500 miles per hour. Orion will eventually be returning from the Moon (or beyond) at much higher speeds. To simulate that, EFT-1 will send Orion much higher up to re-enter at a considerably higher speed.

I’m sure I’ll be getting more into the weeds on this later, but for now I’m jazzed about visiting Goddard again and attending the NASA Social. Hopefully we’ll wake up the next morning and see Orion liftoff for the first time. Go Orion!